
J .  Fluid Mech. (1974), vol. 64, part 2, pp .  393-414 

Printed in Great Britain 
393 
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The interaction between an acoustic source, an unstable shear layer and a large 
inhomogeneous solid surface is studied, using an idealized model in which a 
vortex sheet is generated by uniform subsonic flow on one side of a semi-infinite 
plate, and subjected to  line-source irradiation. Both the steady-state (time- 
harmonic) and initial-value (impulsive source) situations are examined. I n  par- 
ticular, the time-harmonic field which can develop in a causal manner from 
a quiescent initial state is examined, and a specific criterion is given by which 
one may obtain the correct causal harmonic solution without explicit considera- 
tion of an initial-value problem. The satisfaction of this criterion demands not 
only the presence in the harmonic problem of the Helmholtz instability of an 
infinite vortex sheet (Jones & Morgan 1972), but additionally the presence of 
an edge-scatttered instability which in real time consists of a singular line plus 
a tail. The harmonic solution is discussed in some detail, and the consequences 
of omitting the unstable solutions and thereby violating causality are shown 
greatly to  affect the diffracted field in some circumstances. The general features 
of the initial-value problem are also dealt with, the various waves being classified 
and their arrival times a t  any point being given in simple form. The paper ends 
with some speculations as to the applicability of these phenomena t o  the de- 
scription of the process of ‘parametric amplification ’, by which sound generated 
within a duct can be greatly amplified in the far field by triggering unstable modes 
on the shear layer shed from the duct. 

1. Introduction 
This investigation concerns the problem of a vortex sheet behind a semi- 

infinite plate, separating an ambient fluid from a stream moving with uniform 
speed U .  The plane occupies the region x < 0, y = 0 in a Cartesian co-ordinate 
system and the vortex sheet has the undisturbed position x > 0, y = 0, with 
moving fluid in y < 0 and still fluid in the half-space y > 0. This steady flow is 
considered to be disturbed by a line source in the ambient fluid (y > 0), and the 
model is intended to  represent the interaction between the scattering edge and 
the instability waves that are triggered by such a disturbance. 

A natural simplification of the problem is obtained by considering the 
disturbance to  be simple harmonic in time t with frequency w ,  whence 
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the t ime dependence is described by the factor exp ( -id). The solution to the 
initial-value problem can then be obtained, in principle, by superposition of 
such harmonic solutions using the usual Fourier integral synthesis. Related work 
by Jones &. Morgan (1972) has shown that some caution is required in specifying 
the harmonic time problem if the physical condition of causality is to be ensured 
on performing the Fourier inversion integral. These authors have shown the 
necessity to add on eigcnsolutions, that have exponentially large fields as .c + f GO, 

to  achieve causality. 
It is a major aim of this paper to propose a simple criterion for determining 

the correct harmonic solution, without the need to refer explicitly to the initial- 
value problem. Our proposal is to  solve the harmonic problem as if the frequency 
w were imaginary, and then obtain the solution for real (0 by analytic con- 
tinuation with respect to  (r) .  

The impulsive line source is a t  the fixed position (xo,yo) in the still fluid 
(yo > 0) and is of strength S ( t ) .  where S denotes the Dirac delta function. The 
potential p ( x ;  t )  of the disturbance is labelled with a superscript (1) or ( 2 )  accord- 
ing as x is in the still fluid (y > 0) or in the moving fluid (y < 0). 

This initial-value problem then requires the solution of the field equations 

where a, denotes the sound speed in the fluid. Across the vortex sheet the 
linearized kinematic conditions relating the displacement q(x ,  1 )  to the particle 
velocities imply that 

(y = 0,2 > O),  

and continuity of pressure requires 

(;+ u-!L)p'2' = ap(l) at (y = 0, x > 0). 

On the rigid half-plane, we have zero normal velocity, so that 

ap(yay = ap(2yaY = o (y = 0, x < 0). (1.5) 

I n  addition we have a causality condition p = 0 for t < 0, since there is no 
field before the source is activated. 

Finally, we need conditions t,o limit the singnlarities at the edge (0,O). These 
constitute a very important issue which is far from being satisfactorily resolved, 
and therefore worthy of some discussion here. I n  the absence of mean flow, i.e. 
for the Sommerfeld problem, a solution exists with p = O(r4) as r -+ 0, and t.0 
this solution may be added any eigensolution of the problem. The eigensolutions, 
however, are all more singular than this, and it is therefore plausible to choose 
the solution with p = O(r4). A better reason for taking this solution is obtained 
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by considering either the half-plane problem with viscosity included (Alblas 
1957) or the problem with a plate of small but finite thickness (Crighton & 
Leppington 1973). I n  either case, the Sommerfeld solution with p = O(r4) is 
found to be the only one capable of matching an ‘inner ’ solution in which the 
effect of viscosity or of smooth edge geometry, respectively, is properly taken 
into account. Alternatively, one can, as is normally done in electromagnetic 
diffraction theory, devise edge conditions to ensure uniqueness solely with 
reference to  the ‘outer’ problem, though this procedure is not nearly as con- 
vincing in the fluid-mechanical case, where the wave equation does not uniformly 
approximate the full equations of motion right up to  the edge. 

Consider next the Sommerfeld half-plane problem with the same uniform 
subsonic flow on both sides of the plate. There is a particular solution of Som- 
nierfeld’s type with p = O(r*), and there are again eigensolutions continuous 
everywhere except a t  the edge, where they are singular, and which may again 
be rejected. There are also eigensolutioiis p,, discontinuous across the continua- 
tion of the half-plane (though such that the associated pressure and normal 
velocity are continuous there), and with p,, = O(r4) (Jones 1972). The arbitrary 
coefiicient in p,, is a measure of the strength of the unsteady vortex sheet in the 
extension of the half-plane. If the edge is a leading edge then obviously the 
potential must be continuous across the extension, and then p,, = 0 and 
p = O(r6). Note, however, that  the leading-edge velocity is not finite. If, on the 
other hand, the edge is a trailing edge, we have three possible situations: ( a )  there 
is no vortex sheet behind the plate, p E  = 0 and p = O(r6);  ( b )  there is a vortex 
sheet behind the plate, but we do not impose any Kutta condition that the edge 
velocity be finite, in which case p + p E  = O(r*), p,, is determined only up to  
a multiplicative constant and there are infinitely many solutions; (c)  the strength 
of the vortex sheet is such that the velocities a t  the edge are finite (and in fact 
zero), in which case there is a unique choice ofp,,, and this leads t o p  + p E  = O ( d )  
(plus regular terms). One is, of course, inclined to choose (c ) ,  though there is as 
yet no ‘inner ’ problem solved to which any outer solution could be matched, and 
consideration of the outer problem alone cannot lead to any preference ( ( a ) ,  ( b )  
and (c) all lead to  integrable energy density, vanishing energy flux out of the 
edge, etc.). 

Much the same situation arises in our problem. We shall determine a solution 
(2.44) such that the full Kutta condition 

(apart from regular terms) applies to the perturbation potent,ia,ls. We find also, 
however, that  eigensolutions exist with 

these corresponding to the Sommerfeld type of solution and leading to mildly 
infinite velocities a t  the edge in the moving stream. These eigensolutions cannot 
be excluded by any condition relating to the energy a t  the edge. Moreover, they 
are causal. However, in the solution satisfying the full Kutta condition (1.6) 
there is already an unsteady vortex sheet behind the plate, and to  change that 
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vortex sheet strength by an arbitrary amount while simultaneously introducing 
infinite edge velocities seems unreasonable. We therefore insist on ( 1.6), while 
admitting the need for a convincing demonstration of its validity. 

Section 2 deals with the formal solution of the problem (1. I)-( 1.6) when the 
potential has time dependence exp ( - iwt),  hence the wavenumber k = ola,. The 
mathematical problem thus posed for p(x; k) has k real, but i t  is convenient to 
consider k to be complex, and in particular kis taken to be nearly purely imaginary. 
Analytic continuation, with respect to k, then gives the solution for real k. The 
formal integral solution forp(x; k) is manipulated in 5 3 in order to  derive asymp- 
totics as Ikl r --f 00. Finally, i t  is verified in 9 4 that  the real-time solution p(x;t) 
obtained by Fourier inversion of the time-harmonic solution p ( x ;  k) is causal. 
An argument is given to support the proposal that causality will be ensured, in 
this and similar problems, by the device of considering imaginary k and obtaining 
the real-k solution by continu. ct t’ ion. 

An appendix contains some details of the Wiener-Hopf factorization of 
a kernel arising in the formal solution of 3 2. 

2. Time-harmonic solution 
Detailed consideration is given, first, to the case in which t.he potential field p 

is simple harmonic in time, with frequency w = ku,. The solution for general 
t,ime dependence is then obtained by superposition as 

by Fourier synthesis. The superscripts ( 1 )  and (2) again refer to the respective 
regions y > 0 and y < 0. 

It is mathematically convenient to consider the parameter k to be complex, 
with positive imaginary part, and the solution (2.1) is interpret,ecl as the limit as 
k, -+ O +  of the integral along the path k,+ik,, - 00 < k, < 00. 

The incident field, in the still fluid y > 0, is now subtaracted off by writing 

where the line-source potential V ( x ,  y; k) is the solution for an unbounded 
stagnant fluid, and is given by the Hankel function 

$(I) = V + $ ,  $(2) = $, (2.3), (2.4) 

V = (1/4i) HS){k[(z - z0)’ + (y - (2.5) 
The boundary-value problem for the potentials $ and $, each proportional 

to  exp ( - ika , t ) ,  is found from (1.1)-(  1.6) to be 

(V2+k2) $4 = 0, (2.6) 
(2 .7)  

(2.8) 

[v2 - ( M  alax - i i q21  $ = 0, 

(y = 0 , x  > O ) ,  

- iwy + U aypx = a$py 
- iwy = a V/ay + a$/ay 
- iW$+Ua$/&= - i w V - i w $  
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FIGURE 1. The complex-s plane, with branch cuts from s = - 1 and s = - (1 +11.1)-1 to 
- cc and from s = + 1 and + (1 - L W ) - ~  to + CO. Also shown are the Helmholtz instability 
wavenumbers u,, and u:, the domains R, of analyticity of plus and minus functions, and 
the strip S of overlap. 

a$py = 0, a#py = - avpY (y = 0, .T < 01, (2.9) 

V + $  = O(rP), = O(iS),  7 = O ( X ; )  (2.10) 

with the full Kutta regularity conditions 

a t  the edge. M is the Mach number U/ao, assumed less than unity. 
We look for a solution that is analytic in k, for k, > 0. To do this, i t  is convenient 

to solve the problem (2.6)-( 2.10) when the argument of kis close to $7r (the precise 
bounds on arg k are given by (2.34)). The solution for 0 < argk < 7r will then be 
deduced by analytic continuation. 

The boundary condition a t  infinity, required to complete the specifications of 
the problem, is that $ and $ are exponentially small as r = (x2+y2)* -+ co. It 
will be shown later that the analytic continuation of $ (and $), to  values of 
Iargk- 4n-I that exceed a certain critical value (dependent on the Mach number 
M ) ,  inevitably involves a field that increases exponentially with r ,  for some 
values of the polar angle 0. The significance of this property will be discussed 
later, but for the moment our attention is confined t o  the case in which k is 
nearly imaginary. 

To analyse the problem (2.6)-(2. lo), define the half-range Fourier transforms 

(2.11) 

and similarly for the transforms Y and Z of $ and 7, where H denotes the 
Heaviside unit function. We seek the radiating acoustic solutions that decay 
like exp ( - k,lxI) or exp [ - k21xI/( 1 k M ) ]  as x + & co. Thus all ‘plus’ functions, 
denoted by a subscript + , will be analytic for s in the region 

u) 

~ + ( s ,  y) = 1 +(x, y) H (  f: x) exp ( iksx)  dx, 
-03 

R,: Im(Ics) > - ( l+M)-I Imk,  (2.12) 
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whilst all 'minus' functions, denoted by the subscript, - , are analytic in 
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R-: Ini (ks)  < I m  k. (2.13) 
There is evidently a strip 

S: -(1+M)-'Inik < Im(ks) < Imk (2.14) 

in which the full-range Fourier t,ransforms 

J - m  

and similarly Y and Z, are analytic functions of s (see figure 1). 
The 'plus ' region R, contains the real axis from s = - ( 1 + 

contains the real axis from - CQ to + 1.  
We now introduce the square-root functions 

to  CO, anc1:R- 

ys = ( 8 2 -  1)B, 7Vs = {s2-(1+11fs)2)~, (2.16), (2 .17)  

where ys has cuts from 1 to ? 00, and ms has cuts from t ( 1  T M)-' to k m. 
Each of the functions is chosen to  be positive when s is large and just below the 
positive real axis. With these definitions, i t  is found that Re(ky,) > 0 and 
Re (Ams) > 0 throughout the strip S. 

The transform of theincident potential V ( x ,  y )  of formula ( 2 . 5 )  may beevaluaterl 
as 

and t.he transformed field equations (2.6) and (2.7) take the form 

V(s,y) = - ( 2 ~ ~ . / , ) - ' e x P { ~ ~ ~ ~ o - ~ y , ~ y - ~ o ~ } ,  

(d2/dy2 - k2r,2) @ = 0 

( d 2 / d f  - k2rii:) Y = 0. a,nd 

Since 0 and Y must vanish as I y J  +- CQ, for s in the strip S ,  we have 

Q,b, y) = Q,@, 0) exp ( - ky,y) 

w s ,  y) = w, 0) exp ( + kQJ,y), 

@>+K = -Icy,(@++a)-) 

and 

from which i t  follows that 

and Y > + Y  = +kws(Y++Y-). 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

The prime denotes dldy ,  while here and henceforth al1:the functions are evaluated 
a t  y = 0 unless explicitly stated otherwise. 

The boundary conditions (2.8)-( 2.10) become 

- iwD,Z+  = Y>, - ioZ+ = V > + @ > , )  
(2.25) 

YL = 0, @L = - v:, (2.26) 

@- = O(s-'), Y- = @,/(iks) +O(s-#), Z, = O(s-8) as Is1 -+ CO, (2.27) 

where D, = 1 +Ms,  (2.28) 

@, denotes $(O, 0 )  and use has been made of the constraint ~ ( 0 )  = 0. 

- iwD,Y+ = - i w q - i w a + +  u ~ o ,  I 
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Elimination of all the unknown ‘plus ‘ functions except 2, leads to  the equation 

(2.29) -i(o/k) K(s)  2, = DsY-- @-+i( U/w)  $o + (kyS)-l V’ +V+, 

(2.30) 

and (2.29) may be expressed in the form of a Wiener-Hopf equation: 

- i ( w / k )  K Z ,  = F- + 2 v: 
F- = D Y -  - @- + il&b0/w - P. 

(1.31) 

where 

It is shown in the appendix that the Wiener-Hopf kernel function K ( s ) ,  0 iven 
by (2.30), has its zeros at  the complex conjugate points uo and u,*, given by 

uo = -uu,+iu, = - cos (@+i~ , ) ,  

COsh 70 = 2-*M-’{ 1 + (1 + &f2):}. 

( 2 . 3 2 )  

(2.33) 

where 70 is the positive root of the equation 

In  particular, the kernel K has no zeros in the strip S, provided that the 
argument of k is sufficiently close to in. To be precise, if 

largk-&rl < tan-l{[zc,-(l +lM)-’]/uz}, (2.34) 

with u1 and u2 defined by (2.32). 
The standard Wiener-Hopf procedure (Noble 1958, chap. 1 ,  $ 7 )  requires a 

factorization of the kernel K(s)  as a product K+(s) liT-(s) of functions that are 
analytic and non-zero in the respective regions R+ and R-. If we write 

K(s)  = (8 - U o )  ( S  - U,*) K ( S ) ,  

the function K ( S )  has no zeros in the cut s plane, and has the factorization 

K ( S )  = K+(S)  K- (S)  

that is described in the appendix, with K*(s)  of order 8-4 as Is[ -+ 00. It follows 
that the required functions K*(s) are given by 

and 

with 

(2.35) 

in the respective regions R, and R-. 
On dividing (2.31) by K-(s), and decomposing the function 

2 V / K -  = P(s)  = P+ + P- (2.37) 

into a sum of ‘plus’ and ‘minus’ functions, we get 

- i (w /k )  K+Z+-P+ = F-/li-+P- = E(s) .  (2.38) 
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At this stage, (2.38) is valid only within the strip S, but since the left and right 
sides are valid in the respective regions R, aid R-, they provide analytic con- 
tinuations of each other and together define a function E(s)  that is analytic in 
the whole complex-s plane. Further, the regularity conditions (2.27), together 
with the bounds (2.36) and the evident smallness at infinit,y of P+(s) and V*(s), 
imply that each side of formula (2.38) tends to zero its Is1 --> m. According to 
Liouville's theorem, the analytic function E(s )  must therefore be zero. In  par- 
ticular, 

(2.39) 

and the scattered potential transform Q in the ambient fluid 9 > 0 is therefore 
given by formulae (2.23)-(2.26) and (2.18) as 

- i (w/k)  2, = P+/K+ 

Q = V+iiw(ky,)-'Z,, 

whence W Y )  = { V -  (YsK+)-lP+}exP(-kYsy),  (2.40) 

from (2.21) and (2.39). 
Inversion of the first term gives a contribution 

1 9, = - G j  (2kysI-l exp {iks(xo - - kY& + Yo)> 4 k s )  (2.41) 
r 

evaluated along the straight-line coctour r in the strip S: 

I?: s -m < p < 00, a = argk. (2.42) 

The integral (2.41) is recognized as a Hankel function, so 

$r = (4i)-1&1){ k[ (5 - ZO)' -k ( y -k y 0 ) ~ ] 4 }  (2.43) 

and represents the reflected field, as if the rigid plate occupied the whole plane 
y = 0. 

Inversion of the second term of (2.40) gives 

9 - gr = - (2n)-'/ exp{ - iksx-  ky,y}-d(ks).  P+(4 
r Y* K+ (8 1 

Now the usual Cauchy integral expression for the 'plus' function P,, defined by 
(2.37)' is 1 

P+(S) = -1 2ni ,A-s %it, sEr, 

where I" lies just to the left of r, but remaiiis in the strip S. 
Thus the field, for y > 0, is given by 

with I' and I?' shown in figure 2. Note that the integrand depends on k only 
where explicitly shown, in the exponent; the paths of integration also depend 
on k,  being at an angle - arg k to the real axis. 
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(4 (b) (4 
FIGURE 2. Contours r and I" in the s plane defining q5 through (2.44) as an analytic func- 
tion of k when Im k > 0 and ( a )  larg k - $nl < tan-l (ul/uz), ( b )  arg k < i:;n - t a r 1  (ul/u2), 
( c )  arg k > in+ tan-l (ul/uz). 

At this stage we have insisted that arg k be sufficiently close to  Hrr to ensure 
that the contours I' and I" are well aw3y from the singular points u, and u;. 
We now define q5, for all values of arg I% in the range 0 < arg k < rr, by simply 
taking the analytic continuation of formula (2.44). Thus when largk-&nI in- 
creases, so that I? and I?' approach uo or ut, the contour F has to  be deformed so 
as not to  cross these poles (figure 2).  There is no pole a t  t = uo, uz and therefore 
no need to indent the path I". 

The field in the moving fluid, y < 0, is found from formulae (2.24)-(2.26) and 
(2.39) to  be 

(2.45) 
thus 

YJ- = (kw,)-~iwD,Z+ = - (QJW,) (P+/K+), 

along the contours I' and I?' of figure 2 .  
Finally, it is instructive to examine the relationship between the solution 

(2.44) for q5 and that which would have been obtained from the more conven- 
tional procedure of taking k to be nearly real from the outset. To be definite, 
take k = k, + ik,, with k,  and k ,  positive and k ,  very small. The Wiener-Hopf 
analysis goes through almost as before, but with the crucial difference that the 
zero s = uo of the kernel K(s)  now lies in the 'plus' region R,. This implies that 
the correct factorization K = i?+R- is then given by 

A h 

K ,  = (s-u:)K+, K -  = ( s - u ~ ) K -  (2.47) 

in place of (2.35), and formula (2.38) has K* and E replaced by 2% and 2. The 
analytic function8 is again zero, but sincek* are now of order $4 a t  03, this ensures 
only that 2, is of order s-Q as Is1 3 03, whence 7 = O(&) and $- = O(&) as 
x 3 0. One finds, in fact, that  the coefficients implied by the 0-symbols are non- 
zero, and hence that the fields do not satisfy the edge requirement (2.10); evidently 
an eigensolution of the problem (which must necessarily be large as x -+ CO) 

must be added to remedy this defect. 
26 F L M  64 
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The bounded solution $, when k is nearly real, is given by a formula analogous to  
(2.44), viz. 

exp ( - iksx - ky, y + iktxo - k y ,  yo) dt - (2.48) 
1 ' = " + m/+ ds/f.r YBYt(S - Ug*) K+(S)  ( t  - ?lo) K - ( t )  t - S ' 

A A 

where the contours 1' and I?' are inclined a t  an angle - arg k to the real axis, and 
are similar to t,hose of figure 2 (b ) ,  but with no deformation round the pole s = uo. 

The difference between the two solutions Q and 4 is given from (2.42) and 
(2.48) as 

1 exp ( - iksx - ky ,y)  exp (iktx,  - Ly, yo) dt,  (2.49) 
Y S b  - 2%) (8 - 4) K+(4  f\. ytK-( t )  ( t -  uo) 

where yo = u2 - iu, is the value of ys when s = u,,. The first term arises from the 
pole contribution to  Q a t  s = u,, and the double integral accounts for the dif- 
ference in the integrands in formulae (2.44) and (2.48). We see that the difference 
Q - $ is just a multiple of the eigensolution 

(2.50) 

that  has been derived earlier by Crighton ( 1  972a). It is easy to  verify that #E 
does not satisfy the required edge condition (2.10) (with V replaced by zero) 
and that the multiple of $E which must be added to $ to  give the correct edge 
condition is precisely the one indicated above, and finally yields our original 
solution Q of formula (2.44). 

The fact that the eigensolution QE is unbounded, as x -+ 00, might seem to 
indicate that the solution $ is preferable to #, since i t  apparent,ly sacrifices the 
edge condition in favour of the more desirable condition of boundedness a t  
infinity. But this is illusory, since i t  can easily be shown that the analytic con- 
tinuation of $ with respect to k will inevitably produce terms that are large at 
infinity, for some values of k: such terms arise wh%n argk increases beyond 
t,an-l (u2/ul) and n -tan-' (u2/ul), when the contour I' crosses the poles u, and 
u:. Thus if q5 is to  be analytic with respect to  k, then i t  must be unbounded at m 
for some values of arg k ,  and there is nothing to  be gained by relaxing the edge 
conditions (2.10). 

The real-time solution of our initial-value problem (1.1)-( 1.6) requires an 
interpretation of the inversion integral (2.1). This is a far from trivial matter, 
in view of the exponentially large terms that are inherent in our solution, for 
some values of k ,  and we shall return to this matter in 0 4. To pave the way for 
this analysis the next section concerns the manipulation of the double integral 
(2.44), in order to  estimate the behaviour of our solution for large values of Ikl r .  
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3. Solution for large kr 

Polar co-ordinates ( r ,  8) and (r,, 8,) are defined by the usual formulae: 

x = r cos 8, y = r sin 8; x,, = ro cos 0,, y = rosin 8. (3.1) 

To limit the number of possibilities 8, is restricted to  lie within the open region 
(0 ,  in), and confining our attention to  tthe potential 4 in the stagnant fluid, we 
have 0 < 8 < n. Polar co-ordinates (r, ,O,) based on the image point are also 
defined as 

x - x ,  = rl cos 19,) y +yo = rl sin 0,. ( 3 4  

Now for any 8, E (0 ,  &r), the t path (r') of integral (2.44) may be deformed onto 
the hyperbolic path t = cos (8, + ih), where h is real and runs from - co to  +GO, 

without crossing any branch line, and with no contributions from the linking 
arcs at  infinity. The value of yt is - i sin (0, + ih) ,  and then 

exp (iktx, - Icy,y,) = exp ( ikr ,  cosh A).  (3.3) 

For the moment we ignore possible pole contributions from this, and from the 
next move, which is to deform the s path (I?) of (2.44) onto a branch of the hyper- 
bola s = - GOS (8 + i7) ,  - r < CD < 7. The appropriate branch of the hyperbola is 
in the left or right half-plane according as 8 < in or 0 > in. I n  neither case is 
there any contribution from the linking arcs a t  infinity. 

There is no difficulty with branch cuts, except if 8 is sufficiently close to 0. 
Define a Mach angle by 

(3.4) coso, = (1 + M)-l ,  0 < 8,, < in. 

Then if 0 < 8 < 8, the hyperbolic s path cuts the branch line from s = - ( 1 + 
and it will be necessary to add, t o  the integral over the hyperbolic path, an 
additional integral round the branch cut from s = - cos 8 + Oi to s = - cos 8 - Oi 
via the branch point s = - cos 8,. This extra field, which makes a smaller con- 
tribution than the reflected and transmitted fields, is the secondary bow wave 
field, heard for 8 < 8,,, and arises because the moving fluid causes a disturbance 
to  propagate along the boundary of the stagnant fluid a t  the supersonic speed 
U + a,. For the present the bow wave field will be ignored, supposing that 

Thus on leaving aside all pole contributions that may arise from the deforma- 
tions described above, we are left with a double (7, A )  integral which we identify 
as the diffracted wave: 

e,, < 0 < n. 

exp ( ikr  cosh r + ikr, cosh A )  . (3.5) 
{COS (8 + i7) + u,> {COS (0 + i7) + u:} K+{ - cos (8 + i ~ ) }  

x K-{COS (8, + ih)} {cos (8 + i7) + cos (8, + ih)} 
26-2 
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(4 (4 
FIGURE 3. Showing the t and s paths when k is nearly imaginary, as in figure 2 ( n ) .  If a 
is close to  0 or T ,  then the 8 path is indented, as in figures 2 ( b )  and (c) respectively, so as 
not to  cross the poles at s = uo and s = u,*. 

In  particular, if k is now taken to be real and positive, a standard stationary- 
phase calculation shows that, for large kr, 

1 277 4 (cos 8 + uo)-l (cos 8 +?A,*)-' 

Qd - S ( G )  K+( - COS 8) 
esp (ikr, cosh A )  dA 

~ ~ m ~ K ~ { 0 0 8 ~ 8 , + i A ) } { C 0 s 8 + C 0 s ( ~ , + i A ) } ~  (3.6) 

For small values of the Mach number Jl we may use t,he estimates (A 7) ,  
(A 12) and (A 13) for uo, u,*, K+ and K-. If kr and kr, are both large we get 

exp{i(kr+ kr,-$r)}sin+8sin~80 
(3.7) #d 2nk(r r,)4 cos 0 + cos 8,' 

which reproduces the Sommerfeld solution for scattering with no flow. Similarly, 
if kr 

(3.8) 

1 and kr, < 1 we have 

Qd - n-l(ro/r)8sin 88sin 88,exp (ikr+ a ~ i ) ,  

which is again the Sommerfeld result for no flow. 
It is of interest to compare these results with those for the potential 4 that 

would be obtained by taking real k and neglecting to add the eigensolution QE 
to  ensure causality. The difference #-6, given by formula (2.49), can be 
manipulated in the manner described above, whence i t  is found that 

# - = O ( M )  x Sommerfeld solution, kr $ 1, kr, $ 1, 
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so that the error is insignificant for small M .  But if the field point is sufficiently 
close to the edge, specifically if kr, < M ,  then 

which is precisely the same as the result (3.8) for Qd.  Thus $? = o(q5d) and we 
conclude that the potential $? is quite incorrect for sources in the small region 
close to  the edge. The importance of these results is discussed at  greater length 
in S; 6 below. 

Next we look a t  the pole contributions to the integral (2.44) which arise a t  
t = s a n d a t s = u , = - u , + i u , a n d s = u t  =-u,-iu,,withu,andu,givenby 
(2.32). Suppose first that 8, < 8 < 77 - 8,. (3.10) 

Then we get to the hyperbolic paths, described above, by the sequence of de- 
formations ( a )  -+ ( b )  --f (c) --f ( d )  shown in figure 3. 

First, deform the t path (r’) of integral (2.44) above the s path (r) (figures 3 u-+ b )  
to produce a residue field from the pole at t = s. When added to the reflected 
field $? this gives a contribution 

$ - $ n-1(rO/r)* sin $8 sin ge, exp (ikr + inif, (3.9) 

(3.11) 

along the path J?, indented if necessary, of figure 2 .  This potential 9, represents 
the field scattered by a doubly inJinite vortex sheet and is precisely the field 
discussed by Jones & Morgan (1972), including their exponentially growing 
eigensolution, but in a different notation. To facilitate the comparison with that 
work, note that if k is nearly real (and positive, say) then the I’ integral of 
figure 2 ( b )  is deformed round the pole s = u,; this pole yields the residue con- 

- i exp { - ika0@ - x,) - ky,(y +yo)) tribution 

r3uo - K(UO)  

which is the exponentially growing field added by Jones & Morgan to ensure 
causality. 

Now deform the t path onto the hyperbola t = cos (8, + ih) ,  if necessary bending 
the s path to avoid crossing the hyperbola. (For example, the deformation shown 
in figure 3 (c), from s = 03 e-i@ to s = 03 x e - W ,  achieves this aim for all B < 7~ - a.) 
No poles are crossed and there are no contributions from arcs a t  infinity. 

Finally, deform the s path onto the hyperbola s = - cos (8  + i7) (figures 3 c -+ d) ,  
an operation which captures both poles uo and uz or none, according as 8 < in 
or 8 > 4%. If the residue contribution from these poles is denoted by q5e, then 
the potential q5 in the still fluid is 

4 = $ d + $ v + $ e 7  < 8 < ~ - 8 0 7  (3.13) 

, (3.12) 

where q5d and $v are given by (3.5) and (3.11) and 

exp ( - iku,x - ky,y) 
2 ~ y , ( ~ , - ~ ~ ) K + ( u , )  -,K-{cOS(8o+ih)}{cOS (80-!-ih) -Uo) 

exp ( - iku; x - k y t  y) 
27~y;(uz - uo) K+(u,) s K-{COS (8, + ih ) )  (cos (8, + ih)  - uz} 

exp (ikr, Gosh A )  d h  

(3.14) 
exp (ikr, cosh A )  d h  

s q5e = - 
m 

- 

for 0 < in, with $e zero for 0 > $71. 
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If 8 < 8,, then we must add to (3.13) the secondary bow wave field 
exp ( - ik.sx - ky,y)  ds O3 exp (ikr, cosh A )  d h  

(3.15) 
- u,) (s -?& K + ( S )  s - Cu K J t )  (cos (0, +ih) - s}' 

where L is the loop from s = - cos 8 - Oi to  s = - cos 8 + Oi via the branch point 

If  n - 8, < 8 < n then the appropriate hyperbola for the s path lies to the 
right of the hyperbola for the t path. In  this case we do not perform the operation 
(figures 3a + b)  of moving r' to the right of r. The hyperbolic paths are reached 
without any poles being crossed, to  get 

$ = $d+$r, n-8, < 8 < n, (3.16) 

with $d and 9, given by (3.5) and (2.43). 
I n  formula (3.13), the diffracted field Qa, whose integrand becomes singular 

at 8 = an, plays the role of smoothing out the discontinuity of the field Qe,  
which cuts off abruptly a t  8 = in. 

It is to be noted that the diffracted field Q d ,  and also the reflected field Qr,  is 
exponentially small as lkl -+ co in the upper half-plane. This ensures a causal 
solution for the inversion integral corresponding to this potential. The potentials 
$,, and $e7 given by (3.11) and (3.14), both vanish as k, -+ 00 with k, fixed. This 
is indeed ensured by our original formulation, which required arg k t o  be close 
to  in. But if larg k -  4771 exceeds the value tan-' (u,/uz), on the other hand, then 
the waves exp ( - iku,x - ky,y)  and exp ( - ikut  x - ky,*y) increase exponentially 
with Ikl for some values of (2 ,  y), namely when 

(x - Y ) / ( X  + Y) ' I k,Pl I (.I/.,). (3.17) 

Equivalently, these wave modes increase exponentially as r -+ 00 along rays that 
satisfy (3.17). 

This behaviour is an inevitable consequence of the Helmholtz-type instability 
of the basic flow, and the transform of any causal solution must have such 
a property. It follows that the real-time solution cannot be expressed in terms 
of ordinary functions for all (2,  y), and we follow Jones & Morgan (1972) in 
interpreting the solutions in terms of delta functions of complex variables 
(ultradistributions). It is proposed here that the criteria for a causal solution, 
in this and in similar problems, are that $(x,y; k )  must be analytic i n  k,  in the 
upper half-plane k, > 0, and that $ -+ 0 as k ,  + co with k,Jixed. I n  practice these 
criteria are most conveniently met by calculating the solution for imaginary k,  
using conventional transform techniques, with the solut,ions for other values of 
k then inferred by analytic continuation. 

s = - cos eJr. 

4. The initial-value problem 
We now turn to the task of interpreting the Fourier inversion formula 

for t,he various fields Qa, ##., #,, $, and q5,* that are described in 9 3. 
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Now the diffracted, reflected and bow wave potentials (q5(,, q5T and $2b)  are 
analytic functions of k for k, > 0, and are exponentially small as Ikl r -+ co along 
any ray (argk = constant) in this half-plane. It follows that, in each case, the 
integrand of (4.1) is analytic and exponentially small as IEl -too in the upper 
half-plane for all t < 0,  a property which may be used to  show that the integral 
vanishes when t < 0,  by deforming the contour onto a large semi-circle I El = con- 
stant, k, > 0. More generally the potential may vanish for some positive values 
oft, provided it is sufficiently small, as 4 co, to  ensure that the exponentially 
large term exp ( - ika,t) is dominated by the exponentially small factor arising 
in q5a(x,y; k). 

The vortex reflected field 4% [formula (3.1 l)] is also analytic in k, for k, > 0, 
and vanishes as k, -+ co with k, fixed, but for some values of ( x ,  y) it is exponentially 
large as Ikl + co along certain rays. This field has been treated by Jones & 
Morgan, in terms of delta functions of complex variables (ultradistributions), 
and is briefly discussed here in the slightly different notation of this work. 

If the contour l? of formula (3.1 I) is deformed onto the hyperbola 

s = - cos (81+i7), 
then we have 

q5v = q5,. + - (yK)-l  exp (ikr,  cosh 7) d7, 8 , > in, (4.2) 

where q5,. is given by (2.43)) and (r,, 8,) are the polar co-ordinates defined by (3.2).  
If 8, < in, then both the poles, s = uo and s = ui ,  are crossed in the deformation 
and we get an additional term 

2n I S "  - -m 

$a = A exp { - ikuox, - ky,y,} +A* exp { - iku; x1 - kyz y,), (4.3) 
where x1 = x - x o  and y1 = y+yo; A and A* are complex conjugate constants 
with 

(4.4) 
Now the fields given by (4.2) are exponentially small as Ikl + 00, with k, > 0, 

and lead to  causal solutions by the standard procedure described above. As 
for the expression (4.3), it is exponentially small as k, + GO, with k, fixed, pro- 

(4.5) 
vided only that 

This condit,ion is certainly met in the region (0  < 8, < in) of definition of q5u. 
On formally inverting the transform (4.3), in terms of delta functions of complex 

x1+y, > 0. 

argument, we find that 
n,.. 

= Re {2Aao 6(aot - ul(xl + y,) + iu,(x, - y,))). (4.6) 

On writing (4.7) 

we see that (4.6) is non-zero only when t = (u,/ao) (xl+yl),  which is posit,ive 
and corresponds to a causal solution if and only if the constraint (4.5) holds. 
I n  particular t,hen, this solution is causal in the region (0 < 8, < in) of definition 
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Note that t,he exponents of the terms in formula (4.3) have real parts 

* k, u2(z - 9) - k,u& + y), 
that these exponents are negative, as k, + co with k, fixed, if and only if (4.5) 
holds, and that this is the regime in which the ultradistribution solution (4.6) 
can be interpreted as being causal. 

Similarly, the field 9, given by (3.14) is analytic in the upper half k plane and 
is exponentially small as k, + co with k, fixed. This should ensure the causality 
of its inverse integral; but the fact that q5, is exponentially large as Ikl -+ co in 
some directions (arg k = constant) indicates a causal solut,ion only within the 
framework of ultradistributions, not ordinary functions. Thus a formal inversion 
gives 

According to (4.7), the delta function appearing in the integrand of (4.8) is 
non-zero only when a,t = ul(z + y) + r,  cosh A. In  particular the solution pe(x,  y; t )  
is zero for negative t provided that 

u,(x+y)+r, > 0. (4.9) 

This is precisely the condition under which the transform solution (3.14) is 
small as k, --f co, and lends support to  our proposal that the correct harmonic 
solution (corresponding to  a causal solution) is the one which is analytic for 
k, > 0 and is exponentially small as k, --f co. 

I n  order to  interpret the integral of formula (4.8), change the variable to 
c = cosh A,  to get 

p, (x;  t )  = Re 6(roc - a,t + ul(x + y) - iu,(x - y)} F(c) dc, (4.10) 

(4.1 1) 

Lm 
where P(c )  = (c2 - 1)-4 {G(cosh-'c) + G( - c0sh-l c)} 

and (4.12) 

On using the identity (4.7), we find 

which is non-zero provided that 

a,t 2 ro+u1(z+y) (4.14) 

and is zero otherwise. On formally integrat,ing term by term and expanding the 
sum (4.13) i t  is found that 
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FIGURE 4. The wave fronts, in the initial-value problem, intersect the I% axis downstream 
of the plate edge, a t  the points where z has the values (1) U ; ~ ( ~ ~ $ - T ~ ) ,  (2) zo-yo+t~; 'aot ,  
(3) a,t-ro, (4) (1+M) (ao t -~o) ,  ( 5 )  ~ o + ( a ~ t 2 - $ J ' ,  (6) I % O + ~ O ~ ( ~ + ~ M ) - Y , ( ~ M + M ~ ) ~ ,  
where u1 N M-I at low Mach number. 

provided that the inequality of (4.14) holds; in this case the expression (4.15) 
is interpreted as the Taylor series of the ordinary function 

a,t - ul (x  + y )  + iu,(x - y )  
r0 

(4.16) 

At the wave front, where aot = ro + ul (x  + y ) ,  formula (4.15) is not appropriate 
since the argument of F n )  equals unity, and (4.11) shows that F(c)  is singular 
a t  c = 1. On the front the solution is left as the ultradistribution (4.13). Bearing 
in mind that pe appears only for 6 < ts7,  this interpretation of the edge scattered 
instability wave p ,  suggests that it consists of a singular line x + y = (aot - ro)/ul, 
x -  y > 0, y > 0, together with a 'tail' within the triangle bounded by y = 0,  
x -  y = 0 and x + y  = (aot-ro)/ul, wherein p ,  is given by (4.16). This contrasts 
with the other instability wave (figure 4), described by Jones & Morgan (1972), 
this consisting only of a singular line with no tail. 

5. Description of the wave fronts 
A precise description of the time-harmonic wave field is not feasible, on 

account of the complexity of the integral formulae for the various wave functions 
$a described in $32 and 3. The solution of the initial-value problem involves 
the additional task of evaluating the Fourier inversion integral (4.1), for each 
of these fields. AIthough this cannot be performed in detail, it is nevertheless 
possible to determine the wave fronts of these fields, and this information does 
give a useful insight into the nature of the solution. 

Jones & Morgan (1972) have given such a description for the case of a doubly 
infinite vortex sheet [this solution corresponding to the function 9, of the present 
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work, formula (3.1 l)] and show that the wave fronts in the stagnant fluid corre- 
spond to direct and reflected waves, together with a bow wave and instability 
wave (see figure 4). 

Turning now to our diffracted wave Qa, given by formula, (3.5),  its Fourier 
inversion integral (4.1) has the form 

p,(x;t) =sm d7S dAE(7,A)S exp(ikrcosh~+ikrOcosh A-ika,t)dE, (5.1) 

and k appears only where shown explicitly. It is seen that the integrnnd is 
exponentially small in the upper half k plane if 

m m 

- m  - w  - m  

a,t < r + r o ,  (3.2) 

for any 7 and A ,  whencep,,(x; t )  = 0 for these values oft, on collapsing the k con- 
tour in the upper half-plane. The wave front clearly occurs on the circle 

1’= a,t-r, (5.3) 

and the time t = (r+ro)/uo is the time taken for a signal to  travel, via the cdge, 
from the source point ro to the observation point r .  

given by (3.15) for 8 < el,,, can be dealt with in 
a similar manner. For a given value of s on the loop L of formula (3.15), its 
contribution to  the Fourier inversion integral (4.1) will first occur when 

The secondary bow wave 

a,t = -sx+iiy,y+r,, -cos0 < s < -coS8,,. 

Thus the s integral vanishes for all times such that 

a,t < ro + r cos (0 - 8.),). (5.4) 

Since the bow wave $26 occurs only for 0 < O,,, the wave front at a given time 
t ( > ro/uo) is a straight line from x = (1 + M )  (a,t - r,) ,  y > 0, to  the point of 
contact with the cylindrical diffracted wave front r = a,t-r,, and is shown in 
figure 4. 

Our picture of the field in the stagnant fluid (y > 0)  is completed by considering 
the edge instability wave 9,. Formula (4.8) shows that this field does not con- 
tribute until the time a,t = u,(x + y) + ro (5.5) 

and is confined to the domain 0 < 4.. Evidently the signal from ro travels to  
the edge (taking time ro/ao) and then induces a wave field in the triangular region 
bounded by the lines x = y and x+y = (a,t -ro)/u,, with u1 - l/N at  small 
Mach number M .  

Finally, it is remarked that the field $ in the moving fluid (y < 0 )  can be dealt 
with by a similar procedure and will not be described in detail here. The double 
integral expression (2.46) has its pat,hs deformed onto the hyperbolae 

I! = cos (0, + ih) 
s = { - cos (0, + i7) + nil> (1  - M y ,  and 

with polar co-ordinates (r,, 0,) defined by 

x = (i-M2)r2COS02, y =  -(1-M2)4r2sin8, 
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(cf. Jones & Morgan 1972). On taking due account of possible pole and branch- 
point contributions entailed in the deformations, as in the analysis of § 3, the 
field is found to consist essentially of three components 1c.,, $d and $,. The field 
$* is that appropriate t o  a doubly infinite vortex sheet, as discussed by Jones & 
Morgan (1972), and can be interpreted as a convected transmitted wave together 
with an instability wave. The function $d is a (convected) edge diffracted field 
and yFe is an exponentially growing edge instability field, valid for angles 0 that 
exceed a certain cut-off value 8 = - 8,. If the radical w [formula (2.17)] has the 
value 

when u = u,, then the cut-off angle 0, is found to have the value 

73, = - 731 + iw, 

tan8, = u 2 / q  

and is given approximately by tan 8, - (1 + 2M)-l when M is small. I n  the 
initial-value problem, the wave front associated with $, is given by 

whence 
ulx - wz y = a,t - r,, 
x - y  N M(a,t-r,) 

for small values of M (see figure 4). 

6. Discussion 
This paper has examined the simplest prototype problem incorporating the 

interaction between an acoustic source, an unstable shear layer, and the solid 
boundary from which the shear layer is shed. The primary instability field 
generated on a vortex sheet has been examined by Jones & Morgan (1972); the 
new feature of our work is the analysis of the coupling between the instability 
field and the large but inhomogeneous solid surface. This coupling produces an 
edge scattered instability wave (3.14), and contributes also a cylindrical dif- 
fracted field, the latter being the radiating part of $ - $, given by (2.49), pro- 
portional to the eigensolution $E given by (2.50). Because of this diffract,ed field, 
the instability of the vortex sheet is not decoupled from the acoustic field, as 
it is in the case of an infinite vortex sheet (Jones & Morgan 1972). There the 
instability wave is essentially a pseudo-sound field, which tends uniformly to 
its incompressible limit as a, + co. The cylindrical diffracted field for large but 
finite a, is, on the other hand, close to the incompressible limit only when kr < 1 
and not in the wave field. Thus, while in the case of an infinite vortex sheet one 
may, without damage to the acoustics, ignore instabilities or not according to 
one’s conviction as to whether they are relevant to real turbulent flows at high 
Reynolds number, one cannot here ignore instabilities and leave the radiating 
aconsticfieldunchanged. Refer, for example, to (3.8) and (3.9), where the diffracted 
wave arising from the instability eigenfunction $E was shown to dominate 
the whole diffracted field if the source was within a hydrodynamic wavelength 
U/w of the edge. 

Now of course the model adopted here for the shear layer leads to a totally un- 
physical representation of the basic instabilities, even when the source excitation 
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is appropriately smoothed. For even a t  one fixed low frequency, a t  which one 
could argue the relevance of a vortex sheet model to describe t,he initial flow 
near the plate edge, the model predicts exponential growth downstream. I n  
practice, at least three mechanisms are available to curtail the growth (Crow R: 
Champagne 1971, p. 574), namely, the eddy-viscosity effect of small-scale 
background turbulence, the spreading of the mean flow, and the saturation 
resulting from nonlinear energy cascade. Although one can argue that clown- 
stream conditions in an elliptic problem might affect the flow near the edge, i t  
is plausible to think that the flow near the edge (and hence the sound field arising 
from instability-edge coupling) can be calculated according to  linear spatial 
growth theory provided that theory shows the effect of the edge to be insignificant 
at distances a t  which nonlinear or spreading effects must obviously be called 
into play. That is certainly the case here (Orszag & Crow 1970) ,  and t,o some 
extent justifies our belief that the diffracted part of the instabilit,y field is 
correctly given by our analysis, regardless of the downstream conditions which 
must prevent us here from correctly describing the primary instabilities. (Crow 
(1972)  has, however, given a realistic modelling of the primary instabilities on 
a round jet, and has shown that the sound field calculated from this model agrees 
well with the measured sound field of an externally excited high speed jet a t  
angles around 40" to  the exhaust, where one would expect the primary instabilities 
to  dominate.) 

I n  a forthcoming paper, we shall extend this work to the case of sound propaga- 
tion out of a duct, with uniform mean flow within the duct and its continuation 
into a cylindrical vortex sheet. Many treatments have, of course, been given of 
the zero-flow case. No published work appears to  deal with the case of different 
flow on the two sides of the duct wall, though the eigenfunctions [corresponding 
to  q5E of (2.50)] for that  case have been examined (Crighton 1972b). At all 
frequencies these eigenfunctions have a forward directivity (tan $0 a t  high and 
( 1 - cos I 3 )2  a t  low frequencies, 13 being zero in the downstream direction), whereas 
the directivity of the basic diffracted field, neglecting instabilities, is uniform 
at low frequencies and peaked in the rear arc (0 < in) at high frequencies. The 
question arises as to whether the eigenfunction ever dominates the basic dif- 
fracted field, when the two are coupled so as to  ensure the kind of causality 
requirement discussed in the present paper. If  it does, coupling between in- 
stabilities and a duct provides a means of generating intense forward-arc fields 
in a situation where neglect of instabilities would lead one to  the conclusion 
(Crighton 1973) that sound generated within a duct can only be heard appreciably 
in the rear arc. We might call this process parametric amplijkation of internally 
generated sound by the unstable shear layer coupled to the duct. Further details 
will not be given here, nor will we do more than mention the possible relevance of 
parametric amplification to  the noise fields of jet engines operating a t  low exhaust 
speeds. 

D. G. Cright,on acknowledges with thanks t,he support of a cont,ract from the 
Ministry of Defence (Procurement Executive), administered by the National 
Gas Turbine Establishment, Pyestock, Hampshire. 
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Appendix. The Wiener-Hopf kernel function 
The kernel function K(s)  of formula (2.30) is 

K ( s )  = (ms + rs~s2)/~sr,, (A 1) 

with a,, ys and 0, given by (2.16), (2.17) and (2.28); it has cut,s from s = 1 to 
s = 00 and from s = - ( I  +M)-l to s = -a. 

To locate the zeros of K(s) ,  write the numerator of (A 1) in terms of D, = 1 + M s  
and rationalize to get 

( 0 , 2 - l ) ( D ~ + a D , + I ) ( D ~ + b D s + 1 )  = 0 (*4 2 )  

a t  a zero, where a and b are the roots of the quadratic 

X 2 f 2 X - i h - 2  = 0. 

On eliminating spurious roots introduced by the rationalization it is found 
that, for M < 1, the genuine roots of K(s)  are given by the complex conjugate 
numbers uo = -ul +iu2 and u,* = -ul- iu,, with 

zco = N-1{+[ - 1 - (1 + M2)4] + + i [ 2  + 2(  1 + M2)4 - M2]4}, (A 3) 

positive roots being understood. The zeros can be expressed in the more con- 
venient form 

Uo = -U,+iU2 = -COS($7T+i?o) 

U o  * = - U l - i U 2  = -C0S($7T-i70),  

(A 4) 

(A 5 )  

cosh = [ 1 + (1 + M2)q/2*1w. (A 6) 

and 

where ro is the positive root of the equation 

For small values of the Mach number M ,  the roots uo and uz are given approxi- 
mately by 

uo, u,* = ( l / M )  ( - 1 f i ) .  

It is to be noted that the kernel K(s)  does not depend on the wavenumber k, 
although the strip S of analyticity of the Wiener-Hopf equation (2.31) is inclined 
at an angle a = arglc to the real negative s axis, and the 'plus' and 'minus' 
regions R* depend similarly on arglc (see figure 1) .  Evidently the zeros uo and 
u: both lie within R- if arg k is sufficiently close to +T, but zco lies in R, if arg k 
is close to zero, and u: lies in R, when argk is close to 7 ~ .  To deal with all t,liese 
eases i t  is convenient to subtract out the factors s - uo and s - u: by writing 

I<(&') = ( S - U , ) ( S - U , " ) K ( S )  (A 8) 

so that K ( S )  is analytic and free from zeros in the cut s plane. It is convenient 
further t'o isolate the factor 

M2/m, = M2/a+ a_, (A 9) 

with a* = ( (1  * M ) s *  I}*, (A 10) 
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and the function ~ ( s )  can now be decomposed by the usual Cauchy integra.1 
procedure, to give 

In {w(z) ~ ( z ) / i W }  
K * ( s )  = exp (A 11) 

with the integral along a contour r, from z = --co x e-'" to +co x e-ir within 
the strip S.  For K ~ ,  s lies to the right of the contour, while for K-,  s lies to the 
left of the contour. Although the strip S and contour F a  depend on a = arg k, 
the integrals (A 1 1 )  together with their analytic continuations serve to define 
functions K~ which are completely independent of k, and analytic except, for 
branch cuts from - (1 + ~ l f ) - ~  to -a for K+ and from + 1 to +a for K-. The 
estimates (2.36) follow a t  once from (A 11) and (3.35).  

Our main interest lies in the approximate evaluation of the functions K* when 
M is small. These may be obtninecl in a rigorous manner from the Cauchy in- 
tegrals (A 1 l ) ,  but a simpler method is to note that except in neighbourlioods of 
radius M around the branch points, the kerncl K ( s )  may be approximated 
uniformly in s, as M + 0, by 

K ( s )  - { 1 + (1 + 1Ws)2} ($2- 1)-4, 
so that 

K ( S )  - M2(S2- 1)-3 

and has the trivial decomposition 

K+(s )  = AlM(s+ l)-i, K - ( s )  = A-'M(s-  l)-i, (A 12), (A 13) 

where A is arbitrary and is assigned the value A = 1.  Near the branch points 
K(s)  can be approsimated in a different way, though one which overlaps with 
the above, and again an immediate factorization can be achieved, this factoriza- 
tion matching (A 12) and (A 13) in an appropriate sense as s recedes from a branch 
point. 
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